Ce recruteur est en ligne!

Voilà ta chance d'être vu en premier!

Postuler maintenant

Intermediate Data Analyst to support Capital Markets Data Architecture - 99058

Toronto, ON
  • Nombre de poste(s) à combler : 1

  • À discuter
  • Emploi Contrat

  • Date d'entrée en fonction : 1 poste à combler dès que possible

Request ID: 99058-1

Duration - 6 months

Remote/Hybrid: Hybrid - Every Thursday and everything third Friday

Office Location: 81 Bay Street

Work Location (Tax): 81 Bay 19th Floor

Line of Business: Capital Markets


What does the LOB do:

Working on CMDA (Capital Markets Data Architecture) to centralize capital markets data on Databricks; typical work includes data ingestion, building data pipelines, enrichment, and modeling to retrieve/serve data from Databricks


Job Description:

  • Design, build, and maintain data pipelines on Databricks/Spark for ingestion, curation, and retrieval of capital markets data.
  • Perform data enrichment and data modeling aligned to business needs and platform standards.
  • Write clean, efficient SQL and Python for transformations, validation, and automation.
  • Collaborate with the team lead (assigns JIRAs/work items) and senior developers; participate in code reviews and delivery ceremonies.
  • Operate within Azure (preferred) and adapt concepts from other clouds as needed; contribute to documentation and knowledge sharing.


Must Have Requirement:

  • 5 years experience as a Data Analyst/Engineer with big data and data pipelines
  • Strong SQL and Python.
  • Hands‑on with Databricks and solid understanding of the Spark engine.
  • Experience with data modeling and enrichment.
  • Cloud experience-Azure preferred (conceptual parity with AWS/GCP acceptable for ramp‑up).


Nice to Have:

  • Capital Markets data/domain exposure (advantageous but not mandatory).
  • Experience in Azure‑native services around Databricks; familiarity with AWS or GCP concepts.
Disclaimer:
AI may be used in evaluating candidates.
This posting is for an existing vacancy.
Apply

Exigences

Niveau d'études

non déterminé

Années d'expérience

non déterminé

Langues écrites

non déterminé

Langues parlées

non déterminé